Search Your Question...!

Clustering MCQ's

1.  of a set of points is defined using a distance measure .

   View Answer   

   Similarity



2. Each point is a cluster in itself. We then combine the two nearest clusters into one. What type of clustering does this represent ?

   View Answer   

   Agglo



3. Unsupervised learning focuses on understanding the data and its underlying pattern.

   View Answer   

   True



4. Members of the same cluster are far away / distant from each other .

   View Answer   

   False



5. The ______ is a visual representation of how the data points are merged to form clusters.

   View Answer   

   Dendogram



6. A centroid is a valid point in a non-Eucledian space .

   View Answer   

   False



7. measures the goodness of a cluster

   View Answer   

   Clusteroid



8. of two points is the average of the two points in Eucledian Space.

   View Answer   

   Centroid



9. Sampling is one technique to pick the initial k points in K Means Clustering

   View Answer   

   True



10. K Means algorithm assumes Eucledian Space/Distance

   View Answer   

   True



11. is when points don't move between clusters and centroids stabilize.

   View Answer   

   Convergence



12. What is the overall complexity of the the Agglomerative Hierarchical Clustering ?

   View Answer   

   o(N2)



13. The number of rounds for convergence in k means clustering can be lage

   View Answer   

   True



14. is the data point that is closest to the other point in the cluster.

   View Answer   

   Clusteroid



15. What is the R Function to divide a dataset into k clusters ?

   View Answer   

   Kmeans()



No comments:

Post a Comment