Search Your Question...!

Clustering - The Data Ensemble MCQ's

1.  What is a preferred distance measure while dealing with sets ?

   View Answer   

   Jaccard 



2. Each point is a cluster in itself. We then combine the two nearest clusters into one. What type of clustering does this represent ?

   View Answer   

   Agglomerative 



3. Which learning is the method of finding structure in the data without labels.

   View Answer   

   Unsupervised



4. ____________ of a set of points is defined using a distance measure .

   View Answer   

   Similarity 



5. Members of the same cluster are far away / distant from each other .

   View Answer   

   False



6. Unsupervised learning focuses on understanding the data and its underlying pattern.

   View Answer   

   True



7. ___________ of two points is the average of the two points in Eucledian Space.

   View Answer   

   Centroid  



8. A centroid is a valid point in a non-Eucledian space .

   View Answer   

   False



9. What is the overall complexity of the the Agglomerative Hierarchical Clustering ?

   View Answer   

   O(N^3) 



10. ___________ measures the goodness of a cluster.

   View Answer   

   Cohesion 



11. ___________ is the data point that is closest to the other point in the cluster.

   View Answer   

   Clusteroid



12. The ______ is a visual representation of how the data points are merged to form clusters.

   View Answer   

   Dendogram 



13. _____________ is when points don't move between clusters and centroids stabilize.

   View Answer   

   Convergence 



14. ___________ is a way of finding the k value for k means clustering.

   View Answer   

   Cross Validation 



15. The number of rounds for convergence in k means clustering can be lage.

   View Answer   

   True 



16. Sampling is one technique to pick the initial k points in K Means Clustering.

   View Answer   

   True



17. K Means algorithm assumes Eucledian Space/Distance.

   View Answer   

   True



18. What is the R Function to divide a dataset into k clusters ?

   View Answer   

   kclusters() 



19. What is the R function to apply hierarchical clustering to a matrix of distance objects ?

   View Answer   

   hclust()



No comments:

Post a Comment