Search Your Question...!

Advanced Regression Analysis MCQ's

1. What is/are the outcome of optimizing the likelihood function ?

   View Answer   

   Parameters



2. ________________ Regression can be used to model the data when the outcome is dichotomous .

   View Answer   

   Logistic



3. When we normally multiply the coefficients with covariates we get a numeric value ? But when we need to get an output in the range 0 to 1 what do we need to perform ?

   View Answer   

   Non Linear Transformation



4. A linear Model best predicts when the dependent variable is Binary.

   View Answer   

   False



5. The systematic component in a GLM consists of Linear Predictor . What are they ?

   View Answer   

   Covariate and Coefficient



6. Linear Models are best used when there are constraints that the outcome has to be strictly positive.

   View Answer   

   False



7. (True Negative) / (True Negative + False Positive ) is what ?

   View Answer   

   Specificity



8. What is the main objective of Bagging ?

   View Answer   

   Variance Reduction by Aggregation



9. Bagging and Boosting have a very low memory footprint.

   View Answer   

   False



10. What is the link function in a Poisson Regression model ?

   View Answer   

   Log



11. Classification and Regression Trees are a set of ______________ Algorithms

   View Answer   

   Non Linear Learning



12. Bagging is and abbreviation for _________________ Bootstrap

   View Answer   

   Aggregation



13. __________ and ________ are techniques that are used for combining multiple models to improve overall accuracy.

   View Answer   

   Bagging and Boosting



14. What is the main objective of Boosting ?

   View Answer   

   Reduce Prediction Bias



15. What is the output of the Bayesian Regression Model ?

   View Answer   

   Output along with the Probability Distribution



16. Bayesian Regression is Robust to Gaussian Noise

   View Answer   

   True



17. What is the principal concept used in fitting a Tree Algorithm ?

   View Answer   

   Variance Reduction



18. What class of algorithms do Trees belong ?

   View Answer   

   Greedy Algorithms



19. Bagging and Boosting support Stochastic Learning

   View Answer   

   True



20. In poisson regression the dependent variable represents _____________ or ______________

   View Answer   

   Count or Rate



21. In mathematical terms Poisson Regression models _____________ of the count data .

   View Answer   

   Logarithm



22. ROC curve is used to gauge the cost of raising a false alarm

   View Answer   

   True



23. In _____ , modeling is done on the scale in which the data is captured.

   View Answer   

   Generalized Linear Models



24. (True Positive) / (True Positive + False Negative ) is what ?

   View Answer   

   Sensitivity



25. ROC stands for

   View Answer   

   Receiver Operator Characteristics



26. Mean Standard Error is a good evaluation measure for Ranking Problem .

   View Answer   

   False



27. In a confusion matrix what do the values in the Row signify ?

   View Answer   

   Actual Outcome



28. What are the set of Go to algorithms to model non-linear behavior ?

   View Answer   

   Stochastic Regression



No comments:

Post a Comment