Search Your Question...!

Overfitting & Underfitting in Machine Learning

 

Overfitting in Machine Learning

Overfitting refers to a model that models the training data too well.

Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data. This means that the noise or random fluctuations in the training data is picked up and learned as concepts by the model. The problem is that these concepts do not apply to new data and negatively impact the models ability to generalize.

Overfitting is more likely with nonparametric and nonlinear models that have more flexibility when learning a target function. As such, many nonparametric machine learning algorithms also include parameters or techniques to limit and constrain how much detail the model learns.

For example, decision trees are a nonparametric machine learning algorithm that is very flexible and is subject to overfitting training data. This problem can be addressed by pruning a tree after it has learned in order to remove some of the detail it has picked up.

Underfitting in Machine Learning

Underfitting refers to a model that can neither model the training data nor generalize to new data.

An underfit machine learning model is not a suitable model and will be obvious as it will have poor performance on the training data.

Underfitting is often not discussed as it is easy to detect given a good performance metric. The remedy is to move on and try alternate machine learning algorithms. Nevertheless, it does provide a good contrast to the problem of overfitting.

No comments:

Post a Comment